Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1742486

RESUMEN

Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) is composed of four structural proteins and several accessory non-structural proteins. SARS-CoV-2's most abundant structural protein, Membrane (M) protein, has a pivotal role both during viral infection cycle and host interferon antagonism. This is a highly conserved viral protein, thus an interesting and suitable target for drug discovery. In this paper, we explain the structural nature of M protein homodimer. To do so, we developed and applied a detailed and robust in silico workflow to predict M protein dimeric structure, membrane orientation, and interface characterization. Single Nucleotide Polymorphisms (SNPs) in M protein were retrieved from over 1.2 M SARS-CoV-2 genomes and proteins from the Global Initiative on Sharing All Influenza Data (GISAID) database, 91 of which were located at the predicted dimer interface. Among those, we identified SNPs in Variants of Concern (VOC) and Variants of Interest (VOI). Binding free energy differences were evaluated for dimer interfacial SNPs to infer mutant protein stabilities. A few high-prevalent mutated residues were found to be especially relevant in VOC and VOI. This realization may be a game-changer to structure-driven formulation of new therapeutics for SARS-CoV-2.


Asunto(s)
Proteínas M de Coronavirus/genética , Genoma Viral/genética , Mutación , Polimorfismo de Nucleótido Simple , SARS-CoV-2/genética , Sitios de Unión/genética , COVID-19/prevención & control , COVID-19/virología , Proteínas M de Coronavirus/química , Proteínas M de Coronavirus/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , SARS-CoV-2/fisiología
2.
ACS Synth Biol ; 10(11): 3209-3235, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1504658

RESUMEN

SARS-CoV-2 triggered a worldwide pandemic disease, COVID-19, for which an effective treatment has not yet been settled. Among the most promising targets to fight this disease is SARS-CoV-2 main protease (Mpro), which has been extensively studied in the last few months. There is an urgency for developing effective computational protocols that can help us tackle these key viral proteins. Hence, we have put together a robust and thorough pipeline of in silico protein-ligand characterization methods to address one of the biggest biological problems currently plaguing our world. These methodologies were used to characterize the interaction of SARS-CoV-2 Mpro with an α-ketoamide inhibitor and include details on how to upload, visualize, and manage the three-dimensional structure of the complex and acquire high-quality figures for scientific publications using PyMOL (Protocol 1); perform homology modeling with MODELLER (Protocol 2); perform protein-ligand docking calculations using HADDOCK (Protocol 3); run a virtual screening protocol of a small compound database of SARS-CoV-2 candidate inhibitors with AutoDock 4 and AutoDock Vina (Protocol 4); and, finally, sample the conformational space at the atomic level between SARS-CoV-2 Mpro and the α-ketoamide inhibitor with Molecular Dynamics simulations using GROMACS (Protocol 5). Guidelines for careful data analysis and interpretation are also provided for each Protocol.


Asunto(s)
Antivirales/química , Tratamiento Farmacológico de COVID-19 , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , Proteínas Virales/química , Antivirales/uso terapéutico , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA